D527 Interpretation of Complex Structures: Techniques for Unraveling Structural Geometry and History (Distance Learning)

Event Facts

Date:
  • 2 Mar. 2021
  • 3 Mar. 2021
  • 4 Mar. 2021
  • 9 Mar. 2021
  • 10 Mar. 2021
  • 11 Mar. 2021
Times:
Courses consist of a series of 2-3 hour webinar sessions starting at 14:00 London and 08:00 Houston time. Any variation to this will be communicated in the courses joining instructions
Event Code:
D527a21VC
Sessions:
6 sessions
Instructors:
Gloria Eisenstadt
Location:
Virtual
Booking Status:
Good Availability
Fee:
USD $2,920 (Exclusive of tax)
LOGIN TO BOOK A COURSE

Course Facts

Course Code:
D527
Duration:
3 days
Type:
Virtual Classroom
CEU:
2.4 Continuing Education Units
PDH:
24 Professional Development Hours
Certificate:
Certificate Issued Upon Completion

Summary

Business Impact: Correctly evaluating both the timing of trap formation and the corresponding burial history are essential to building a portfolio of drillable prospects and assessing risk.

This is a hands-on workshop that is focused on interpretation techniques for complex 2D and 3D seismic data. Many exploration areas have undergone multiple periods and directions of deformation and often misinterpreted. 2D and 3D seismic data in complex areas present very different problems for the interpreter. 2D seismic data sets are less time consuming to interpret but usually there are not enough data to constrain theinterpretation. Complexly deformed 3D datasets can present a different challenge, as the frequency and complexity of the faulting can be overwhelming. In both cases, experience in unraveling, multiple deformations, evaluating confusing map patterns, evaluating results from auto-fault picking and machine learning, and knowing best practice use of seismic attributes for structural interpretation is essential.

Duration and Training Method

This highly interactive virtual classroom course, divided into 6 webinar sessions (equivalent to a three-day classroom course), is oriented towards problem solving rather than theory. It contains short lectures interspersed with seismic interpretation exercises, discussions and experimental models. All remote participants are required to have and use both a camera and microphone, and need to be willing to be an active participant. The ratio of exercises to lectures is 80:20. Enrollment is limited to 15 participants.

Participants will learn to:
  1. Analyze data and select an appropriate structural analysis workflow for interpreting a data set.
  2. Understand the possible causes for complex structures and know how to use structural analysis tools such as regional elevation, recognizing growth layers, fault-fold relationships, recognizing detachments and ductile layers to constrain interpretation.
  3. Understand the theoretical and experimental basis for structural models and understand the impact of detachments and ductile layers on structural style.
  4. Learn how to differentiate strike-slip deformation from multiple deformation events.
  5. Understand the concepts of restoration and forward modelling and employ them to diagnose interpretation errors.
  6. Analyze the use of curvature analysis and coherence as a proxy for fault mapping.
  7. Analyze pre-existing structural interpretations

Structural interpretation topics covered will include:

  • Structural analysis work flow – how to determine the best way to approach each data set
  • Quick restoration techniques to diagnose interpretation errors
  • Differentiating strike-slip deformation from oblique reactivation of basement faults or inversion
  • Recognizing map patterns of reactivated structures
  • How useful are traditional fault analysis tools in areas of multiple deformations?
  • Do older faults always get reactivated?
  • Is lineament analysis useful?
  • Use of growth stratigraphy to determine timing of each deformation event
  • Use of curvature analysis and coherence as a proxy for fault mapping
  • How ductile layers change patterns of fault reactivation

Who should attend

This course is designed for the experienced interpreter working with complex data but could be applicable for geoscientists with a minimum of four to five years’ experience interpreting seismic data and at least a college-level course in structural geology.

Prerequisites and linking courses

This course is designed as a Skilled-Level follow-on to Foundation-Level N090 (Seismic Structural Styles Workshop). A basic knowledge of seismic interpretation is assumed, as presented in N085 (Introduction to Seismic Interpretation).

Geoscientists taking this course may also wish to consider field courses on the Structure and Tectonics portfolio such as Foundation level N016/N116 (Structural Geology for Petroleum Exploration Nevada, USA and SW England, UK respectively) or Skilled level N053 Compressional Structural Styles: Models for Exploration and Production (Alberta, Canada).

Gloria Eisenstadt

Background
 Gloria is an international consultant in structural geology, with 30 years of experience in the oil and gas industry. Gloria began her work in the industry at Mobil’s Research Lab and Exploration Technology Company where she worked for 11 years as a researcher, internal consultant and technical teacher. She has been an independent consultant since 2000. Her primary research and consulting areas are the interpretation and analysis of complex 2D and 3D seismic data, compressional and inversion structures, salt/shale gravity- driven systems, the use of physical models to understand structural deformation, and cross section restoration. She has been teaching Nautilus courses since 2004.

Affiliations and Accreditation
PhD The Johns Hopkins University - Geology
MA Temple University - Geology
BSc Temple University - Geology

Courses Taught
N090: Seismic Structural Styles Workshop
N288: Interpretation of Seismic Data in Structurally Complex Settings
N289: The Niobrara Formation as a Resource Play (Colorado, USA)
N527: Interpretation of Complex Structures: Techniques for Unraveling Structural Geometry and History

Alternative Dates for this Course

Related Subjects